Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Bis[1-(2-naphthyliminomethyl)-2naphtholato- $\kappa^2 N$ ,O]copper(II)

#### Zhenghua Guo,<sup>a</sup> Lianzhi Li,<sup>a</sup>\* Chengyuan Wang,<sup>b</sup> Jinghong Li<sup>a</sup> and Tao Xu<sup>a</sup>

<sup>a</sup>School of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China, and <sup>b</sup>Research Center of Medical Chemistry and Chemical Biology, Chongqing Technology and Business University, Chongqing 400067, People's Republic of China

Correspondence e-mail: lilianzhi1963@yahoo.com.cn

Received 10 July 2009; accepted 2 August 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.007 Å; R factor = 0.062; wR factor = 0.121; data-to-parameter ratio = 12.7.

In the title complex,  $[Cu(C_{21}H_{14}NO)_2]$ , the Cu<sup>II</sup> atom, lying on an inversion center, is coordinated by two bidentate 1-(2naphthyliminomethyl)-2-naphtholate ligands in a *trans* arrangement, forming a slightly distorted square-planar coordination geometry. The mean planes of two naphthyl systems of the ligand make a dihedral angle of 40.32 (11)°.

#### **Related literature**

For general background to Schiff base complexes, see: Gamovski *et al.* (1993); Tarafder *et al.* (2002); Yang *et al.* (2000). For related structures, see: Unver *et al.* (2003); Wang *et al.* (2007).



#### Experimental

#### Crystal data

| erystat data                                                                                                                                                                                      |                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| $\begin{bmatrix} Cu(C_{21}H_{14}NO)_2 \end{bmatrix} \\ M_r = 656.20 \\ Monoclinic, P2_1/n \\ a = 5.648 (3) Å \\ b = 18.578 (8) Å \\ c = 14.796 (6) Å \\ \beta = 93.635 (5)^{\circ} \end{bmatrix}$ | $V = 1549.4 (12) Å^{3}$<br>Z = 2<br>Mo K\alpha radiation<br>\mu = 0.75 mm^{-1}<br>T = 298 K<br>0.35 \times 0.10 \times 0.04 mm |
| Data collection                                                                                                                                                                                   |                                                                                                                                |
| Bruker SMART 1000 CCD<br>diffractometer<br>Absorption correction: multi-scan<br>( <i>SADABS</i> ; Sheldrick, 1996)<br>$T_{\rm min} = 0.780, T_{\rm max} = 0.971$                                  | 7695 measured reflections<br>2721 independent reflections<br>1869 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.062$       |
| Refinement                                                                                                                                                                                        |                                                                                                                                |
| $R[F^2 > 2\sigma(F^2)] = 0.062$<br>$wR(F^2) = 0.121$<br>S = 1.10<br>2721 reflections                                                                                                              | 214 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.47$ e Å $^{-3}$ $\Delta \rho_{min} = -0.75$ e Å $^{-3}$    |

## Table 1 Selected bond lengths (Å).

|        | 0 |           |        |           |
|--------|---|-----------|--------|-----------|
| Cu1-O1 |   | 1.874 (3) | Cu1-N1 | 2.011 (3) |

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the Natural Science Foundation of Shandong Province (No. Y2004B02) for a research grant.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2212).

#### References

- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Gamovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Tarafder, M. T. H., Khoo, T.-J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2691–2698.

Unver, H., Mehmet, Z. D. & Nuri, D. T. (2003). J. Chem. Crystallogr. 33, 253–256.

Wang, L., Dong, J.-F., Li, L.-Z., Li, L.-W. & Wang, D.-Q. (2007). Acta Cryst. E63, m1059–m1060.

Yang, Z.-Y., Yang, R.-D., Li, F.-S. & Yu, K.-B. (2000). Polyhedron, 19, 2599– 2604. supplementary materials

Acta Cryst. (2009). E65, m1049 [doi:10.1107/S1600536809030694]

### Bis[1-(2-naphthyliminomethyl)-2-naphtholato- $\kappa^2 N, O$ ]copper(II)

#### Z. Guo, L. Li, C. Wang, J. Li and T. Xu

#### Comment

Schiff base complexes play an important role in the stereochemical models of transition metal coordination chemistry, with their easy preparation, diversity and structural variation (Gamovski *et al.*, 1993). They aslo have been intensively investigated owing to their strong coordination capability and diverse biological activities, such as antibacterial, and antitumor activities (Tarafder *et al.*, 2002; Yang *et al.*, 2000). As part of a series of the studies (Wang *et al.*, 2007), we report here the synthesis and structure of the title compound, a new copper(II) complex with a bidentate Schiff base ligand derived from the condensation of 2-hydroxy-1-naphthyldehyde and 2-naphthylamine.

The molecular structure of the title complex is shown in Fig. 1. The Cu<sup>II</sup> atom, lying on an inversion center, is coordinated by two bidentate ligands in a *trans* arrangement, forming a CuN<sub>2</sub>O<sub>2</sub> square-planar configuration (Table 1), with the typical values of Cu—O and Cu—N bond lengths (Unver *et al.*, 2003). The mean planes of the chelate ring N1, C1, C2, C3, O1, Cu1 (A), bicycles C2—C11 (B) and C12—C21 (C) make the following dihedral angles: A/B 18.92 (19), A/C 58.14 (12) and B/C 40.32 (11)°. Additionally, the relatively short intermolecular distance H12···C7<sup>i</sup> (symmetry code: (i) x + 1, y, z) of 2.90Å indicates the possible prescence of C—H··· $\pi$  interaction, which forms a one-dimensional chain structure (Fig. 2).

#### **Experimental**

2-Naphthylamine(0.143 g, 1 mmol) was dissolved in hot methanol (10 ml) and added dropwise to a methanol solution (3 ml) of 2-hydroxy-1-naphthyldehyde (0.172 g, 1 mmol). The mixture was then stirred at 323 K for 2 h. Subsequently, an aqueous solution (2 ml) of cupric acetate hydrate (0.200 g, 1 mmol) was added dropwise and stirred for another 5 h. The solution was held at room temperature for 15 d, whereupon green needle crystals suitable for X-ray diffraction were obtained.

#### Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and with  $U_{iso}(H) = 1.2U_{eq}(C)$ .

#### **Figures**



Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) -x + 1, -y + 1, -z + 1].



Fig. 2. One-dimensional chain structure of the title compound, connected by weak C—H $\cdots\pi$ interactions (dashed lines).

## $Bis [1-(2-naphthyliminomethyl)-2-naphtholato-\kappa^2 N, O] copper (II)$

| Crystal data                  |                                                       |
|-------------------------------|-------------------------------------------------------|
| $[Cu(C_{21}H_{14}NO)_2]$      | $F_{000} = 678$                                       |
| $M_r = 656.20$                | $D_{\rm x} = 1.407 \ {\rm Mg \ m}^{-3}$               |
| Monoclinic, $P2_1/n$          | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: -P 2yn           | Cell parameters from 2286 reflections                 |
| a = 5.648 (3)  Å              | $\theta = 2.2 - 25.2^{\circ}$                         |
| <i>b</i> = 18.578 (8) Å       | $\mu = 0.75 \text{ mm}^{-1}$                          |
| c = 14.796 (6) Å              | T = 298  K                                            |
| $\beta = 93.635 (5)^{\circ}$  | Needle, green                                         |
| $V = 1549.4 (12) \text{ Å}^3$ | $0.35 \times 0.10 \times 0.04 \text{ mm}$             |
| Z = 2                         |                                                       |
|                               |                                                       |

#### Data collection

| Bruker SMART 1000 CCD<br>diffractometer                        | 2721 independent reflections           |
|----------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                       | 1869 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                        | $R_{\rm int} = 0.062$                  |
| T = 298  K                                                     | $\theta_{\text{max}} = 25.0^{\circ}$   |
| $\varphi$ and $\omega$ scans                                   | $\theta_{\min} = 1.8^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 1996) | $h = -6 \rightarrow 6$                 |
| $T_{\min} = 0.780, \ T_{\max} = 0.971$                         | $k = -22 \rightarrow 21$               |
| 7695 measured reflections                                      | $l = -15 \rightarrow 17$               |
|                                                                |                                        |

#### Refinement

| 0                                                              |                                                                                 |
|----------------------------------------------------------------|---------------------------------------------------------------------------------|
| Refinement on $F^2$                                            | Secondary atom site location: difference Fourier map                            |
| Least-squares matrix: full                                     | Hydrogen site location: inferred from neighbouring sites                        |
| $R[F^2 > 2\sigma(F^2)] = 0.062$                                | H-atom parameters constrained                                                   |
| $wR(F^2) = 0.121$                                              | $w = 1/[\sigma^2(F_o^2) + (0.P)^2 + 3.3732P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| S = 1.10                                                       | $(\Delta/\sigma)_{max} < 0.001$                                                 |
| 2721 reflections                                               | $\Delta \rho_{max} = 0.47 \text{ e } \text{\AA}^{-3}$                           |
| 214 parameters                                                 | $\Delta \rho_{min} = -0.75 \text{ e } \text{\AA}^{-3}$                          |
| Primary atom site location: structure-invariant direct methods | Extinction correction: none                                                     |

|     | x            | у            | Ζ          | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|-----|--------------|--------------|------------|-------------------------------|
| Cu1 | 0.5000       | 0.5000       | 0.5000     | 0.0330 (2)                    |
| N1  | 0.4680 (6)   | 0.58180 (17) | 0.5874 (2) | 0.0309 (9)                    |
| 01  | 0.2210 (5)   | 0.45773 (16) | 0.5372 (2) | 0.0411 (8)                    |
| C1  | 0.3354 (8)   | 0.5772 (2)   | 0.6562 (3) | 0.0341 (11)                   |
| H1  | 0.3487       | 0.6148       | 0.6977     | 0.041*                        |
| C2  | 0.1725 (7)   | 0.5215 (2)   | 0.6753 (3) | 0.0297 (10)                   |
| C3  | 0.1107 (8)   | 0.4686 (2)   | 0.6098 (3) | 0.0340 (10)                   |
| C4  | -0.0904 (8)  | 0.4233 (2)   | 0.6237 (3) | 0.0364 (11)                   |
| H4  | -0.1336      | 0.3884       | 0.5807     | 0.044*                        |
| C5  | -0.2175 (8)  | 0.4301 (2)   | 0.6970 (3) | 0.0410 (12)                   |
| Н5  | -0.3507      | 0.4013       | 0.7022     | 0.049*                        |
| C6  | -0.1527 (8)  | 0.4806 (2)   | 0.7671 (3) | 0.0372 (11)                   |
| C7  | 0.0473 (8)   | 0.5251 (2)   | 0.7577 (3) | 0.0327 (10)                   |
| C8  | 0.1156 (9)   | 0.5708 (3)   | 0.8321 (3) | 0.0448 (12)                   |
| H8  | 0.2512       | 0.5990       | 0.8298     | 0.054*                        |
| C9  | -0.0143 (10) | 0.5740 (3)   | 0.9069 (3) | 0.0552 (14)                   |
| Н9  | 0.0324       | 0.6050       | 0.9541     | 0.066*                        |
| C10 | -0.2161 (10) | 0.5315 (3)   | 0.9131 (4) | 0.0588 (15)                   |
| H10 | -0.3052      | 0.5348       | 0.9637     | 0.071*                        |
| C11 | -0.2825 (9)  | 0.4848 (3)   | 0.8445 (3) | 0.0500 (13)                   |
| H11 | -0.4149      | 0.4556       | 0.8494     | 0.060*                        |
| C12 | 0.7489 (8)   | 0.6684 (2)   | 0.6569 (3) | 0.0355 (11)                   |
| H12 | 0.7366       | 0.6458       | 0.7125     | 0.043*                        |
| C13 | 0.6125 (7)   | 0.6447 (2)   | 0.5833 (3) | 0.0295 (10)                   |
| C14 | 0.6260 (9)   | 0.6813 (2)   | 0.4998 (3) | 0.0398 (11)                   |
| H14 | 0.5292       | 0.6669       | 0.4499     | 0.048*                        |
| C15 | 0.7776 (9)   | 0.7369 (2)   | 0.4917 (3) | 0.0432 (12)                   |
| H15 | 0.7829       | 0.7602       | 0.4362     | 0.052*                        |
| C16 | 0.9284 (8)   | 0.7605 (2)   | 0.5658 (3) | 0.0418 (12)                   |
| C17 | 0.9088 (8)   | 0.7268 (2)   | 0.6506 (3) | 0.0362 (11)                   |
| C18 | 1.0563 (9)   | 0.7503 (3)   | 0.7259 (3) | 0.0492 (13)                   |
| H18 | 1.0404       | 0.7300       | 0.7827     | 0.059*                        |
| C19 | 1.2210 (10)  | 0.8026 (3)   | 0.7154 (4) | 0.0671 (17)                   |
| H19 | 1.3191       | 0.8169       | 0.7650     | 0.081*                        |
| C20 | 1.2455 (10)  | 0.8353 (3)   | 0.6308 (5) | 0.0677 (17)                   |
| H20 | 1.3591       | 0.8709       | 0.6244     | 0.081*                        |
| C21 | 1.1009 (10)  | 0.8144 (3)   | 0.5583 (4) | 0.0580 (15)                   |
| H21 | 1.1167       | 0.8363       | 0.5025     | 0.070*                        |
|     |              |              |            |                               |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

### Atomic displacement parameters $(Å^2)$

|     | $U^{11}$   | $U^{22}$    | $U^{33}$   | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|------------|-------------|------------|--------------|--------------|--------------|
| Cu1 | 0.0312 (4) | 0.0303 (4)  | 0.0371 (4) | -0.0027 (4)  | -0.0018 (3)  | -0.0056 (4)  |
| N1  | 0.031 (2)  | 0.0240 (19) | 0.037 (2)  | -0.0042 (16) | -0.0053 (18) | -0.0032 (16) |

# supplementary materials

| 01  | 0.0391 (19) | 0.0390 (18) | 0.0447 (19) | -0.0039 (15) | -0.0004 (16) | -0.0144 (15) |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C1  | 0.030 (3)   | 0.034 (2)   | 0.037 (3)   | 0.001 (2)    | -0.005 (2)   | -0.005 (2)   |
| C2  | 0.024 (2)   | 0.029 (2)   | 0.035 (2)   | 0.0015 (18)  | -0.0035 (19) | -0.0003 (18) |
| C3  | 0.030 (3)   | 0.031 (2)   | 0.040 (3)   | 0.000 (2)    | -0.009 (2)   | 0.001 (2)    |
| C4  | 0.025 (2)   | 0.035 (3)   | 0.049 (3)   | -0.003 (2)   | -0.005 (2)   | 0.002 (2)    |
| C5  | 0.027 (3)   | 0.041 (3)   | 0.055 (3)   | -0.006 (2)   | -0.004 (2)   | 0.009 (2)    |
| C6  | 0.035 (3)   | 0.038 (3)   | 0.039 (3)   | 0.008 (2)    | -0.001 (2)   | 0.012 (2)    |
| C7  | 0.030 (3)   | 0.032 (2)   | 0.035 (2)   | 0.0029 (19)  | -0.004 (2)   | 0.0051 (19)  |
| C8  | 0.043 (3)   | 0.054 (3)   | 0.037 (3)   | -0.007 (2)   | 0.001 (2)    | 0.005 (2)    |
| C9  | 0.071 (4)   | 0.058 (3)   | 0.036 (3)   | 0.002 (3)    | 0.004 (3)    | -0.002 (2)   |
| C10 | 0.062 (4)   | 0.068 (4)   | 0.049 (3)   | 0.005 (3)    | 0.020 (3)    | 0.009 (3)    |
| C11 | 0.045 (3)   | 0.047 (3)   | 0.059 (3)   | 0.000 (2)    | 0.007 (3)    | 0.009 (3)    |
| C12 | 0.043 (3)   | 0.036 (2)   | 0.027 (2)   | 0.003 (2)    | -0.003 (2)   | -0.002 (2)   |
| C13 | 0.027 (2)   | 0.027 (2)   | 0.033 (3)   | 0.0024 (19)  | -0.001 (2)   | -0.0038 (19) |
| C14 | 0.047 (3)   | 0.038 (3)   | 0.034 (3)   | -0.007 (2)   | -0.006 (2)   | -0.002 (2)   |
| C15 | 0.054 (3)   | 0.042 (3)   | 0.033 (3)   | -0.003 (2)   | 0.000 (2)    | 0.002 (2)    |
| C16 | 0.040 (3)   | 0.034 (3)   | 0.052 (3)   | -0.003 (2)   | 0.006 (2)    | -0.005 (2)   |
| C17 | 0.030 (3)   | 0.033 (3)   | 0.046 (3)   | 0.001 (2)    | -0.003 (2)   | -0.012 (2)   |
| C18 | 0.053 (3)   | 0.042 (3)   | 0.050 (3)   | -0.002 (3)   | -0.016 (3)   | -0.009 (2)   |
| C19 | 0.057 (4)   | 0.061 (4)   | 0.081 (5)   | -0.011 (3)   | -0.013 (3)   | -0.027 (3)   |
| C20 | 0.050 (4)   | 0.058 (4)   | 0.094 (5)   | -0.018 (3)   | 0.002 (3)    | -0.016 (4)   |
| C21 | 0.059 (4)   | 0.045 (3)   | 0.070 (4)   | -0.014 (3)   | 0.008 (3)    | -0.001 (3)   |
|     |             |             |             |              |              |              |

## Geometric parameters (Å, °)

| Cu1—O1                 | 1.874 (3)   | С9—Н9      | 0.9300    |
|------------------------|-------------|------------|-----------|
| Cu1—O1 <sup>i</sup>    | 1.874 (3)   | C10—C11    | 1.369 (7) |
| Cu1—N1 <sup>i</sup>    | 2.011 (3)   | C10—H10    | 0.9300    |
| Cu1—N1                 | 2.011 (3)   | C11—H11    | 0.9300    |
| N1—C1                  | 1.304 (5)   | C12—C13    | 1.367 (6) |
| N1—C13                 | 1.428 (5)   | C12—C17    | 1.417 (6) |
| O1—C3                  | 1.292 (5)   | C12—H12    | 0.9300    |
| C1—C2                  | 1.424 (6)   | C13—C14    | 1.416 (6) |
| C1—H1                  | 0.9300      | C14—C15    | 1.352 (6) |
| C2—C3                  | 1.409 (6)   | C14—H14    | 0.9300    |
| C2—C7                  | 1.449 (6)   | C15—C16    | 1.414 (6) |
| C3—C4                  | 1.439 (6)   | С15—Н15    | 0.9300    |
| C4—C5                  | 1.344 (6)   | C16—C21    | 1.406 (6) |
| C4—H4                  | 0.9300      | C16—C17    | 1.413 (6) |
| C5—C6                  | 1.429 (6)   | C17—C18    | 1.418 (6) |
| С5—Н5                  | 0.9300      | C18—C19    | 1.361 (7) |
| C6—C11                 | 1.401 (6)   | C18—H18    | 0.9300    |
| C6—C7                  | 1.413 (6)   | C19—C20    | 1.406 (8) |
| С7—С8                  | 1.425 (6)   | С19—Н19    | 0.9300    |
| C8—C9                  | 1.367 (7)   | C20—C21    | 1.363 (7) |
| С8—Н8                  | 0.9300      | C20—H20    | 0.9300    |
| C9—C10                 | 1.395 (7)   | C21—H21    | 0.9300    |
| O1—Cu1—O1 <sup>i</sup> | 180.00 (16) | С11—С10—С9 | 119.7 (5) |

| O1—Cu1—N1 <sup>i</sup>               | 89.07 (13)  | C11—C10—H10     | 120.1      |
|--------------------------------------|-------------|-----------------|------------|
| O1 <sup>i</sup> —Cu1—N1 <sup>i</sup> | 90.93 (13)  | С9—С10—Н10      | 120.1      |
| O1—Cu1—N1                            | 90.93 (13)  | C10-C11-C6      | 120.6 (5)  |
| O1 <sup>i</sup> —Cu1—N1              | 89.07 (13)  | С10—С11—Н11     | 119.7      |
| N1 <sup>i</sup> —Cu1—N1              | 180.00 (15) | C6—C11—H11      | 119.7      |
| C1—N1—C13                            | 116.4 (3)   | C13—C12—C17     | 121.6 (4)  |
| C1—N1—Cu1                            | 122.1 (3)   | C13—C12—H12     | 119.2      |
| C13—N1—Cu1                           | 121.0 (3)   | C17—C12—H12     | 119.2      |
| C3—O1—Cu1                            | 129.6 (3)   | C12—C13—C14     | 118.7 (4)  |
| N1—C1—C2                             | 127.8 (4)   | C12—C13—N1      | 121.6 (4)  |
| N1—C1—H1                             | 116.1       | C14—C13—N1      | 119.6 (4)  |
| C2—C1—H1                             | 116.1       | C15—C14—C13     | 121.0 (4)  |
| C3—C2—C1                             | 120.4 (4)   | C15—C14—H14     | 119.5      |
| C3—C2—C7                             | 119.8 (4)   | C13—C14—H14     | 119.5      |
| C1—C2—C7                             | 119.3 (4)   | C14—C15—C16     | 121.4 (4)  |
| O1—C3—C2                             | 124.7 (4)   | C14—C15—H15     | 119.3      |
| O1—C3—C4                             | 117.0 (4)   | C16—C15—H15     | 119.3      |
| C2—C3—C4                             | 118.3 (4)   | C21—C16—C17     | 118.6 (5)  |
| C5—C4—C3                             | 121.8 (4)   | C21—C16—C15     | 123.1 (5)  |
| С5—С4—Н4                             | 119.1       | C17—C16—C15     | 118.3 (4)  |
| С3—С4—Н4                             | 119.1       | C16—C17—C12     | 119.0 (4)  |
| C4—C5—C6                             | 121.5 (4)   | C16—C17—C18     | 119.1 (4)  |
| С4—С5—Н5                             | 119.3       | C12—C17—C18     | 121.9 (4)  |
| С6—С5—Н5                             | 119.3       | C19—C18—C17     | 120.2 (5)  |
| C11—C6—C7                            | 120.7 (4)   | C19—C18—H18     | 119.9      |
| C11—C6—C5                            | 120.5 (4)   | C17—C18—H18     | 119.9      |
| C7—C6—C5                             | 118.8 (4)   | C18—C19—C20     | 121.2 (5)  |
| C6—C7—C8                             | 116.8 (4)   | С18—С19—Н19     | 119.4      |
| C6—C7—C2                             | 119.5 (4)   | С20—С19—Н19     | 119.4      |
| C8—C7—C2                             | 123.7 (4)   | C21—C20—C19     | 119.3 (5)  |
| C9—C8—C7                             | 121.3 (5)   | C21—C20—H20     | 120.4      |
| С9—С8—Н8                             | 119.4       | С19—С20—Н20     | 120.4      |
| С7—С8—Н8                             | 119.4       | C20—C21—C16     | 121.7 (5)  |
| C8—C9—C10                            | 120.8 (5)   | C20—C21—H21     | 119.1      |
| С8—С9—Н9                             | 119.6       | C16—C21—H21     | 119.1      |
| С10—С9—Н9                            | 119.6       |                 |            |
| O1—Cu1—N1—C1                         | 19.0 (3)    | C2—C7—C8—C9     | 177.5 (4)  |
| O1 <sup>i</sup> —Cu1—N1—C1           | -161.0 (3)  | C7—C8—C9—C10    | 1.2 (8)    |
| O1—Cu1—N1—C13                        | -168.7 (3)  | C8—C9—C10—C11   | 1.3 (8)    |
| O1 <sup>i</sup> —Cu1—N1—C13          | 11.3 (3)    | C9—C10—C11—C6   | -1.5 (8)   |
| N1 <sup>i</sup> —Cu1—O1—C3           | 161.7 (4)   | C7—C6—C11—C10   | -0.9 (7)   |
| N1—Cu1—O1—C3                         | -18.3 (4)   | C5—C6—C11—C10   | 177.9 (4)  |
| C13—N1—C1—C2                         | 178.5 (4)   | C17—C12—C13—C14 | -2.4 (6)   |
| Cu1—N1—C1—C2                         | -8.8 (6)    | C17—C12—C13—N1  | 174.0 (4)  |
| N1—C1—C2—C3                          | -10.4 (7)   | C1—N1—C13—C12   | 47.9 (6)   |
| N1—C1—C2—C7                          | 177.7 (4)   | Cu1—N1—C13—C12  | -124.9 (4) |
| Cu1—O1—C3—C2                         | 5.6 (6)     | C1—N1—C13—C14   | -135.7 (4) |

# supplementary materials

| Cu1—O1—C3—C4                                 | -174.8 (3) | Cu1—N1—C13—C14  | 51.6 (5)   |
|----------------------------------------------|------------|-----------------|------------|
| C1—C2—C3—O1                                  | 13.0 (6)   | C12-C13-C14-C15 | 2.7 (7)    |
| C7—C2—C3—O1                                  | -175.1 (4) | N1-C13-C14-C15  | -173.8 (4) |
| C1—C2—C3—C4                                  | -166.6 (4) | C13-C14-C15-C16 | 0.1 (7)    |
| C7—C2—C3—C4                                  | 5.3 (6)    | C14-C15-C16-C21 | 175.0 (5)  |
| O1—C3—C4—C5                                  | 180.0 (4)  | C14-C15-C16-C17 | -3.1 (7)   |
| C2—C3—C4—C5                                  | -0.4 (6)   | C21—C16—C17—C12 | -174.9 (4) |
| C3—C4—C5—C6                                  | -2.9 (7)   | C15-C16-C17-C12 | 3.3 (7)    |
| C4—C5—C6—C11                                 | -177.5 (4) | C21—C16—C17—C18 | 2.6 (7)    |
| C4—C5—C6—C7                                  | 1.2 (6)    | C15-C16-C17-C18 | -179.2 (4) |
| С11—С6—С7—С8                                 | 3.2 (6)    | C13—C12—C17—C16 | -0.6 (7)   |
| C5—C6—C7—C8                                  | -175.5 (4) | C13—C12—C17—C18 | -178.0 (4) |
| C11—C6—C7—C2                                 | -177.6 (4) | C16—C17—C18—C19 | -2.8 (7)   |
| C5—C6—C7—C2                                  | 3.7 (6)    | C12-C17-C18-C19 | 174.6 (5)  |
| C3—C2—C7—C6                                  | -6.9 (6)   | C17—C18—C19—C20 | 1.4 (8)    |
| C1—C2—C7—C6                                  | 165.0 (4)  | C18—C19—C20—C21 | 0.2 (9)    |
| C3—C2—C7—C8                                  | 172.2 (4)  | C19—C20—C21—C16 | -0.4 (9)   |
| C1—C2—C7—C8                                  | -15.9 (6)  | C17—C16—C21—C20 | -1.1 (8)   |
| C6—C7—C8—C9                                  | -3.4 (7)   | C15-C16-C21-C20 | -179.2 (5) |
| Symmetry address (i) $w + 1$ $w + 1$ $z + 1$ |            |                 |            |

Symmetry codes: (i) -x+1, -y+1, -z+1.







